Insulin Signaling in the Peripheral and Central Nervous System Regulates Female Sexual Receptivity during Starvation in Drosophila
نویسندگان
چکیده
Many animals adjust their reproductive behavior according to nutritional state and food availability. Drosophila females for instance decrease their sexual receptivity following starvation. Insulin signaling, which regulates many aspects of insect physiology and behavior, also affects reproduction in females. We show that insulin signaling is involved in the starvation-induced reduction in female receptivity. More specifically, females mutant for the insulin-like peptide 5 (dilp5) were less affected by starvation compared to the other dilp mutants and wild-type flies. Knocking-down the insulin receptor, either in all fruitless-positive neurons or a subset of these neurons dedicated to the perception of a male aphrodisiac pheromone, decreased the effect of starvation on female receptivity. Disrupting insulin signaling in some parts of the brain, including the mushroom bodies even abolished the effect of starvation. In addition, we identified fruitless-positive neurons in the dorso-lateral protocerebrum and in the mushroom bodies co-expressing the insulin receptor. Together, our results suggest that the interaction of insulin peptides determines the tuning of female sexual behavior, either by acting on pheromone perception or directly in the central nervous system.
منابع مشابه
Feeding regulates sex pheromone attraction and courtship in Drosophila females
In Drosophila melanogaster, gender-specific behavioural responses to the male-produced sex pheromone cis-vaccenyl acetate (cVA) rely on sexually dimorphic, third-order neural circuits. We show that nutritional state in female flies modulates cVA perception in first-order olfactory neurons. Starvation increases, and feeding reduces attraction to food odour, in both sexes. Adding cVA to food odou...
متن کاملInsulin-Producing Cells Regulate the Sexual Receptivity through the Painless TRP Channel in Drosophila Virgin Females
In a variety of animal species, females hold a leading position in evaluating potential mating partners. The decision of virgin females to accept or reject a courting male is one of the most critical steps for mating success. In the fruitfly Drosophila melanogaster, however, the molecular and neuronal mechanisms underlying female receptivity are still poorly understood, particularly for virgin ...
متن کاملتأثیر تزریق داخل بطنی متفورمین بر یادگیری و حافظه فضایی موشهای آلزایمری مدل استرپتوزوسین
Background and objective: Insulin and its receptor are located in the central nervous system where it regulates many important processes such as neural proliferation, apoptosis, synaptic transmission, neuronal survival, synaptic plasticity, learning and memory. Alzheimer's disease (AD) is characterized by the accumulation of extracellular amyloid-β (Aβ) plaques, and intracellular aggregation of...
متن کاملAscending SAG Neurons Control Sexual Receptivity of Drosophila Females
Mating induces pronounced changes in female reproductive behavior, typically including a dramatic reduction in sexual receptivity. In Drosophila, postmating behavioral changes are triggered by sex peptide (SP), a male seminal fluid peptide that acts via a receptor (SPR) expressed in sensory neurons (SPSNs) of the female reproductive tract. Here, we identify second-order neurons that mediate the...
متن کاملPropranolol Prevents Osteoporosis and up-regulates Leptin in Ovariectomized Rats
Osteoporosis is a systemic skeletal disease and there is a close relationship between the sympathetic nervous system (SNS) and bone metabolism. Leptin has been shown to regulate bone formation and bone resorption via the SNS. However, the effect of SNS on leptin signaling has not been clearly understood. In the present study, we studied the effect of propranolol on ovariectomy-induced osteoporo...
متن کامل